PHASE FORMATION AND THERMAL STABILITY OF THE COMPOUNDS IN THE Bi₂O₃--PbO SYSTEM

Ana Brăileanu^a, Maria Zaharescu^a, D. Crişan^a and E. Segal^b

^aRomanian Academy, Institute of Physical Chemistry, 202 Spl. Independentei, 77208 Bucharest ^bUniversity of Bucharest, Faculty of Chemistry, Department of Physical Chemistry 13 Blv. Republicii, Bucharest, Roumania

Abstract

The scientific interest for the Bi_2O_3 -PbO system has increased due to the importance of the PbO in the high- T_c superconducting phase formation in the Bi_2O_3 -SrO-CaO-CuO system. Also Bi_2O_3 -PbO system contains compounds with some specific semiconductor and dielectric properties and Bi_2O_3 -based solid solutions are well known as high oxygen ion conductors.

Previously, several low melting defined compounds have been identified in the system: 6Bi₂O₃·PbO; 3Bi₂O₃·2PbO; 4Bi₂O₃·5PbO; 4Bi₂O₃·6PbO and Bi₂O₃·3PbO.

This work deals with the phase formation and thermal stability of these compounds. Under non-isothermal conditions, in all mixtures regardless of the Bi_2O_3/PbO ratio, the compound $6Bi_2O_3 \cdot PbO$ is preferentially formed, followed by the compound $4Bi_2O_3 \cdot SPbO$. The formation of the compound $4Bi_2O_3 \cdot 6PbO$ was not confirmed while the formation of the compound $Bi_2O_3 \cdot 3PbO$ occurs through a complex mechanism which includes an intermediate step in which a solid solution with the litharge structure was identified. Under isothermal conditions in the same temperature range the tendency to form the stoichiometric compounds increases. All compounds form, decompose and melt at temperatures between 530–780°C.

Keywords: Bi₂O₃-PbO system, DTA-TG, X-ray diffraction

Introduction

The interest in the phase diagram of the binary system Bi_2O_3 -PbO is due to the fact that it contains compounds with some specific semiconductor and dielectric properties [1-3] and Bi_2O_3 -based solid solutions are well known as high oxygen ion conductors over a wide temperature range [4-7]; in addition PbO is frequently used as an additive to enhance high- T_c superconducting phase formation in the system Bi_2O_3 -SrO-CaO-CuO.

The phase diagram of the Bi₂O₃-PbO system was established by Boivin *et al.* [8, 9] who pointed out the existence of the following 5 compounds: $6Bi_2O_3 \cdot PbO$; $3Bi_2O_3 \cdot 2PbO$; $4Bi_2O_3 \cdot 5PbO$; $3Bi_2O_3 \cdot 7PbO$ and $Bi_2O_3 \cdot 3PbO$. Further investigations carried out by Biefeld and White [10] confirm the existence of the compounds $6Bi_2O_3 \cdot PbO$; $3Bi_2O_3 \cdot 2PbO$; $4Bi_2O_3 \cdot 5PbO$ and $Bi_2O_3 \cdot 3PbO$, but not the existence of $3Bi_2O_3 \cdot 7PbO$. While Vihreva *et al.* [11] indicate as well as the existence of the compound $4Bi_2O_3 \cdot 5PbO$ as well as that of $4Bi_2O_3 \cdot 6PbO$, other authors [12] show the existence of two polymorphic forms for the compound $4Bi_2O_3 \cdot 5PbO$.

0368–4466/97/ \$ 5.00 © 1997 Akadémiai Kiadó, Budapest John Wiley & Sons Limited Chichester All the papers confirm the formation of all the defined compounds at low temperatures; they are characterized by a low temperature range of thermal stability.

Fig. 1 The phase diagram of the Bi₂O₃-PbO system [10]

Figure 1 shows the phase diagram of the system Bi_2O_3 -PbO as given by Biefeld and White [10].

In a previous study [13] the competition between PbO and Bi_2O_3 in the reaction with CaO, when these three oxides coexist, has been investigated. It has been shown that the first reaction which occurs is that between Bi_2O_3 and PbO leading, in the presence of CaO, to the preferential formation of Ca_2PbO_4 .

Taking into account the literature data and following our previous studies [14, 15], this paper is dedicated to the investigation of the formation of the compounds in the binary system Bi_2O_3 -PbO. As these compounds are low temperature intermediates in the Bi-based system, the thermal stability of these compounds was also investigated.

Experimental

Preparation of mixtures

The initial oxide compositions (mol%) of the investigated samples are listed in Table 1.

The raw materials were p.a. grade oxides: Bi_2O_3 (Carlo Erba) and PbO-litharge (Fluka). The analysed mixtures were prepared by a dry homogenization technique.

Sample	Formula	Bi ₂ O ₃	РЬО
6:1	6Bi ₂ O ₃ ·PbO	85.71	14.29
3:2	3Bi ₂ O ₃ ·2PbO	60.00	40.00
4:5	4Bi ₂ O ₃ ·5PbO	44.44	55.56
4:6	4Bi ₂ O ₃ ·6PbO	40.00	60.00
1:3	Bi ₂ O ₃ ·3PbO	25.00	75.00

Table 1 Starting oxide composition of the investigated samples (mol%)

Methods of analysis

DTA and TG investigations of the mixtures were performed up to 800° C, in static air atmosphere at a heating rate of 3 K min⁻¹. A MOM Budapest type Paulik-Paulik-Erdey derivatograph OD-102 was used. Pellets, 10 mm diameter and 2 mm thickness, were prepared using a die press, and were sintered for 1 h at characteristic temperatures as shown by the DTA curves.

In order to characterize the phase composition of the samples, X-ray diffraction analyses were carried out both on samples resulting from non-isothermal treatments, under DTA-TG conditions, up to different temperatures and on samples resulting from isothermal treatments. A HZG-3 X-ray diffractometer with CoK_{α} radiation was used. Phases were identified according to the JCPDS card file [16] and literature data [10, 11].

Results and discussion

Non-isothermal treatments

Figure 2 shows the DTA and TG curves of the mixtures corresponding to the formation of the binary compounds, in the temperature range 400–800°C. The assignment of the recorded thermal effects is listed in Table 2.

In all cases the formation, decomposition and melting of the investigated compounds occurred in the 530-780°C temperature range. For all the investigated samples, at 530°C, an overlap of weak endothermic effects accompanied by weight loss could be noticed. This could be assigned to the reduction of Pb_3O_4 generated by the oxidation of the PbO introduced into the mixtures, simultaneously with the formation of some nonequilibrium compounds.

The assignment of the thermal effects recorded at temperatures higher than 530° C, shown in Table 2, is in good agreement with the phase diagram established by Biefeld and White [10].

The phase composition of all the samples thermally treated under non-isothermal conditions is presented in Table 3. This has been obtained for two temperatures of thermal treatment considered characteristic for the formation of the compounds in the investigated system. The X-ray diffraction data confirmed the assignment of the thermal effects from the DTA curves.

Fig. 2 DTA-TG curves of all the investigated binary composition

In all the cases at 550°C the compound $6Bi_2O_3$ ·PbO was identified. Thus this was an intermediate phase for all the investigated mixtures no matter what the initial composition was, even in the mixture 1:3 in which PbO exceeds. Except the 6:1 mixture, at 550°C, in all the other mixtures the compound $4Bi_2O_3$ ·SPbO was also identified. Thus under non-isothermal conditions, at 550°C, for all compositions a mixture of phases was present.

At 600°C, in all mixtures (except the mixtures 3:2 and 1:3), single phases were obtained. For the mixtures 6:1 and 4:5 the stoichiometric compounds were formed. The compound $4Bi_2O_3$ 5PbO was identified both in 4:5 and 4:6 mixtures. In the 4:6

Assignment	6Bi ₂ O ₃ ·PbO formation	6Bi ₂ O ₃ .PbO decomposition	melting	mixture of phases formation	3Bi ₂ O ₃ ·2PbO formation	3Bi ₂ O ₃ ·2PbO decomposition	melting	mixture of phases formation	4Bi ₂ O ₃ 5PbO formation	melting	mixture of phase formation	4Bi ₂ O ₃ -5PbO formation and PbO oxidation	melting	mixture of phases formation	Bi ₂ O ₃ ·3PbO formation	Bi ₂ O ₃ ·3PbO decomposition	melting
Mass variation/%	-0.25			-0.26				-0.18			-0.21	+0.04		-0.16			
Thermal effects (endo)	530	710	780	530	595	615	695	530	600	660	530	600	655	530	600	622	640
$T_{\rm range}^{\rm o}{\rm C}$	400-550	550-800		400550	550-800			400-550	550-800		400550	550-800		400-550	550-800		
Starting composition	6Bi ₂ O ₃ ·PbO			3Bi ₂ O ₃ ·2PbO	1			4Bi ₂ O ₃ ·5PbO			4Bi ₂ O ₃ .6PbO			Bi ₂ O ₃ .3PbO			
Sample	6:1			3:2				4:5			4:6			1:3			

Table 2 DTA-TG results for the investigated compositions

BRĂILEANU: Bi2O3-PbO SYSTEM

Somnla	Thermal treatment						
Sample	550°C	600°C					
6:1	6Bi ₂ O ₃ PbO; X*	6Bi ₂ O ₃ .PbO					
3:2	6Bi ₂ O ₃ ·PbO; 4Bi ₂ O ₃ ·5PbO	6Bi ₂ O ₃ ·PbO					
	3Bi ₂ O ₃ ·2PbO	4Bi₂O₃·5PbO					
4:5	6Bi ₂ O ₃ ·PbO; 4Bi ₂ O ₃ ·5PbO	4Bi ₂ O ₃ ·5PbO					
	3Bi ₂ O ₃ ·2PbO						
4:6	6Bi ₂ O ₃ ·PbO; 4Bi ₂ O ₃ ·5PbO	4Bi ₂ O ₃ ·5PbO					
	3Bi ₂ O ₃ ·2PbO						
1:3	6Bi ₂ O ₃ ·PbO; 4Bi ₂ O ₃ ·5PbO	solid solution with litharge					
	Bi ₂ O ₃ ·3PbO; PbO	stucture; Bi ₂ O ₃ ·3PbO					
	(massicote)						

 Table 3 Phases identified by X-ray diffraction in the samples thermally treated under non-isothermal conditions

*X-Bi₂O₃-based solid solution with CaF_2 type cubic structure

Sample	Thermal treatment						
	510°C	550°C	600°C	620°C			
6:1		6Bi ₂ O ₃ ·PbO; X*	6Bi ₂ O ₃ ·PbO; X*	6Bi ₂ O ₃ ·PbO			
		6Bi ₂ O ₃ ·PbO;	6Bi ₂ O ₃ ·PbO;	6Bi ₂ O ₃ ·PbO;			
3:2		4Bi ₂ O ₃ ·5PbO;	3Bi ₂ O ₃ ·2PbO	4Bi₂O₃·5PbO			
		3Bi ₂ O ₃ 2PbO		3Bi ₂ O ₃ 2PbC			
	6Bi ₂ O ₃ ·PbO;	6Bi ₂ O ₃ ·PbO;		·			
4:5	4Bi ₂ O ₃ ·5PbO;	4Bi ₂ O ₃ ·5PbO;	4Bi ₂ O ₃ ·5PbO	4Bi ₂ O ₃ ·5PbC			
	Pb ₃ O ₄	Pb ₃ O ₄					
	6Bi ₂ O ₃ ·PbO;	6Bi ₂ O ₃ ·PbO;					
4:6	4Bi ₂ O ₃ -5PbO;	4Bi ₂ O ₃ ·5PbO;	4Bi ₂ O ₃ ·5PbO	4Bi ₂ O ₃ ·5PbC			
	Pb ₃ O ₄	Pb ₃ O ₄					
		6Bi ₂ O ₃ ·PbO;					
1:3		4Bi₂O₃·5PbO;	Bi ₂ O ₃ ·3PbO	Bi ₂ O ₃ ·3PbO			
		Pb ₃ O ₄					

 Table 4 Phases identified by X-ray diffraction in the samples thermally treated under isothermal conditions (1 h)

*X-Bi₂O₃-based solid solution with CaF_2 type cubic structure

Fig. 3 X-ray diffraction data for some representative samples: 6:1, 3:2, 4:5 and 1:3, thermally treated under non-isothermal conditions up to 600°C (o 6Bi₂O₃·PbO;
• 4Bi₂O₃·SPbO; ⊽ Bi₂O₃·3PbO; ■ solid solution with litharge structure)

mixture the PbO excess oxidized and led to a small weight increase noticed in the TG curve (Fig. 1). In the mixture 1:3 a solid solution with the litharge structure was observed.

The identification of a mixture of $6Bi_2O_3$ ·PbO and $4Bi_2O_3$ ·SPbO compounds in the mixture 3:2 could be accounted for by the low temperature range of thermal stability of the compound $3Bi_2O_3$ ·2PbO (575-610°C). Through slow cooling, the sample 3:2 decomposed into $6Bi_2O_3$ ·PbO and $4Bi_2O_3$ ·SPbO.

As shown in Fig. 3, the X-ray diffraction results have established that in all the investigated compositions well crystallized compounds have been obtained, indicating the high reactivity of the oxides in the system.

Isothermal treatments

The results of X-ray diffraction for the isothermally treated samples are listed in Table 4.

The samples 4:5 and 4:6 isothermally treated at 510° C exhibited a phase mixture in which the compound Pb₃O₄ was identified.

At 550°C, in all compositions, a mixture of phases was present in agreement with the non-isothermal treatment results. For the mixtures rich in PbO the compound Pb_3O_4 was still identified.

At 600°C, in most cases, defined compounds according to the initial molar ratio were obtained. However, one has to mention that for the composition 4:6 the structure of the compound 4:5 was identified and for the composition 3:2 a mixture of phases was present which could be explained by the low temperature range of the thermal stability of this compound. Similar behaviour was recorded at 620°C.

Conclusions

DTA-TG and X-ray diffraction investigations have been performed on the system Bi₂O₃-PbO both under non-isothermal and isothermal conditions.

Under non-isothermal conditions:

- the first compound which is formed is $6Bi_2O_3 \cdot PbO$, no matter what the composition of the initial mixture was, which is followed by the compound $4Bi_2O_3 \cdot 5PbO$;

- for the starting composition 4:6 the X-ray diffraction pattern corresponding to the compound $4Bi_2O_3$ ·5PbO was obtained;

- the compound $3Bi_2O_3 \cdot 2PbO$ has not been obtained as a pure phase, due to its low temperature range of thermal stability;

– the formation of the compound Bi_2O_3 3PbO occurs through a complex mechanism which includes an intermediate step in which a solid solution with litharge structure was identified.

Under isothermal conditions for the same temperature range, the trend to form stoichiometric compounds increases. All compounds form, decompose and melt at temperatures between 530-780°C.

References

- 1 T. Mitsuyn, K. Wasa and S. Hayakawa, J. Appl. Phys., 47 (1976) 2901.
- 2 P. Demonchy, J.-C. Boivin and D. Thomas, C. R. Acad. Sci. (France), C290 (1980) 279.
- 3 G. A. Bordovskii and A. B. Zarkoi, Soviet. Phys.-Solid State, 25 (1983) 2511.
- 4 T. Takahashi, H. Iwahara and T. Arao, J. Appl. Electrochem., 5 (1975) 187.
- 5 T. Takahashi and H. Iwahara, Mat. Res. Bull., 13 (1978) 1447.

- 6 K. Z. Fung, H. D. Baek and A. V. Virkar, Solid State Ionics, 52 (1992) 199.
- 7 N. M. Sammes, R. J. Phillips and M. G. Fee, Solid State Ionics, 69 (1994) 121.
- 8 J.-C. Boivin, D. Thomas and G. Tridot, C. R. Acad. Sci. (France), C268 (1969) 1149.
- 9 J.-C. Boivin and G. Tridot, C. R. Acad. Sci. (France), C278 (1974) 865.
- 10 R. M. Biefeld and S. S. White, J. Am. Ceram. Soc., 64 (1981) 182.
- 11 O. A. Vihreva, I. N. Dubrovina, A. M. Yankin and V. F. Balakirev, Zh. Neorg. Khim., 38 (1993) 1215.
- 12 G. A. Bordovskii and A. B. Zarkoi, Phys. Stat. Solidi, 87 (1985) K7.
- 13 A. Brăileanu, M. Zaharescu, D. Crişan and E. Segal, Thermochim. Acta, 269/270 (1995) 553.
- 14 M. Zaharescu, A. Brăileanu, R. Mănăilă, V. Fruth and G. Tănase, Mat. Res. Bull., 27 (1992) 491.
- 15 M. Zaharescu, A. Brăileanu and D. Crişan, J. Thermal Anal., 40 (1993) 321.
- 16 ***JCPDS, International Center for Diffraction Data, 1985, Powder Diffraction File.